

OPTIMUNIZE Stakeholder Meeting Accra 2016

The RTS,S vaccine trials: further evidence for NSE or other explanations?

Olaf Müller

Institute of Public Health, Medical School, Ruprecht-Karls-Universität Heidelberg

Global malaria burden today

Impact of malaria control tools

Threats by drug & insecticide resistance development

1995-2000

Artemisinin resistance

Ashley et al. NEJM 2014

2008-2014

Pyrethroid resistance

Hemmingway et al. Lancet 2016

Need for malaria vaccines

Vaccine types:

1 = Pre-erythrocitic vaccines

2 = Blood stage vaccines

3 = Transmission blocking vaccines

Subunit vaccines (e.g. RTS,S)

Whole attenuated parasite approaches

(e.g. sporozoites from y-irradiated mosquitoes; immunization-treatment-vaccination, genetically attenuated sporozoites)

Challenges for malaria vaccines

- There is no vaccine against a human parasite until today.
- Although natural immunity to malaria develops in endemic areas, this generally takes some years of exposure and is imperfect.
- Extensive immuno-epidemiological studies have provided limited insight into what the best antigens for a vaccine might be.
- No good animal models for human malaria parasites.

Nick White, Manson Tropical Diseases: ,, Despite considerable effort and expense, a generally available and highly effective malaria vaccine is still unlikely in the future. "

RTS,S

The Circumsporozoite
Protein (CSP)

- ❖ It results from a collaboration, commenced in the 1980s, between the US Walter Reed Army Institute and GSK.
- * A hybrid protein, formulated in an adjuvant named AS01.
- ❖ Initial vaccine constructs of CSP showed very low-level efficacy, but expressing the central repeat ('R') fused to the C-terminal region known to contain T cell epitopes (hence 'T') fused in turn to the hepatitis B surface antigen ('S') yielded a yeast-expressed protein RTS. To generate immunogenic particles, the RTS protein needed to be co-expressed with the 'S' protein to yield RTS,S.

History of RTS,S development

the NEIM

and hepatitis B

surface antigen

RTS,S phase III trial

Eleven study centres in 7 SSA countries (enrolment 03/2009 – 01/2011; follow-up until 01/2014)

- > 6537 **infants** (6-12 weeks)
- > 8922 children (5-17 months)
- Primary endpoint was the occurrence of malaria (passive case detection) after dose 3

Phase III study design

Infants (6-12 wks): RTS,S or comparator with EPI vaccines (3 arms)

Children (5-17 mo): RTS,S or comparator (3 arms)

- Arm 1: Three times RTS,S + booster dose at 20 months
- \triangleright Arm 2: Three times RTS,S + comparator at 20 months
- > Arm 3: Comparator vac. (infants meningococcal, children rabies)

Final RTS,S trial results - efficacy -

- * Vaccine efficacy (VE) was 31% in infants, and 66% in children (12 months after dose 3)
- * With and without booster dose, VE was 26% and 18% in infants and 36% and 28% in children (38/48 months after dose 1)
- ❖ VE against severe malaria reached 32% in boostered children.
- ❖ VE became negative after prolonged follow-up in children exposed to higher transmission levels (5-7 years after dose 1)

Final RTS,S trial results - adverse events -

RTS,S-specific:

- Increased risk for febrile convulsions (infants and children)
 - roughly 2/1000 RTS,S doses, 0.5/1000 comparator doses -
- Increased risk for meningitis (only children)
 - 21 cases in the two RTS,S groups, 1 in the control group —
- Increased risk for mortality, females (infants and children)
 - 123 cases in the two RTS,S groups, 33 in the control groups –

RTS,S Clinical Trial Partnership. Lancet 2015

Final RTS,S trial results - mortality -

	R3R	R3C	C3C	Risk Ratio
Infants	51	55	42	1.26 (0.89-1.80)
Children	61	46	46	1.22 (0.87-174)
Total	112	106	88	1.24 (0.97-158)
Males	50	45	55	0.84 (0.61-1.17)
Females	62	61	33	1.91 (1.30-2.79)

Klein et al. mBio 2016; 7 e00514, modified by Greenwood 2016

Final RTS,S trial results - adverse events -

Associated with successful malaria control:

- Increased malaria incidence over time
- Increased incidence in cerebral malaria (only in children)
 - 54 cases in the two RTS,S groups, 16 in the control group –

"Rebound malaria" = An increase in malaria incidence after malaria control has been achieved above that which would have occurred without the intervention.

RTS,S Clinical Trial Partnership. Lancet 2015 Olotu et al. NEJM 2016; Greenwood UK, 2016

RTS,S - conclusions

- RTS,S provides only modest and short-lived protection.
- Increased AEs and increased mortality are unexplained issues; reasons are unclear (different NSE of RTS,S/comparators?!)
- Malaria vaccines in young children may lead to rebound morbidity (and probably mortality) in older age groups.
- Because of these residual questions about programmatic feasibility, preventive effect, and safety, the WHO recommended that more evidence be generated in pilot implementation studies (only 4 dose regimen in children) in 3-5 SSA countries with moderate-to-high levels of malaria transmission.